Preserving the Play Environment
Promoting the Value of Play
Protecting Children

Provided as a public service by
play&park structures®
About the Authors

Teresa B. Hendy, CPSI
President, Site Masters, Inc.

Teresa (Teri) is the President and owner of Site Masters Inc., a Cincinnati, Ohio based consulting firm specializing in the design and safety of children’s play environments. For the past twenty six years Teri has been actively involved as a design and safety consultant to the school, child care, and park and recreation industries as well as to private foundations, science centers, museums, and national quick serve restaurants.

Teri brings extensive knowledge of the standards and guidelines that apply to the playground industry as she has actively worked with the ASTM subcommittees since 1987 to develop industry standards. Teri is on the Voice of Play Advisory Board to IPEMA and an executive board member, instructor, and co-chair of the curriculum committee for the National Playground Safety Institute. She is a nationally recognized author, speaker, and expert in the area of playground safety and design.

Daniel M. Hendy, CPSI
Site Masters, Inc.

Dan has over twenty years of experience in the recreation industry working with early childhood centers, government, municipalities, and schools. Having previously owned and operated a sales and construction company, Dan possesses extensive knowledge and experience in managing the construction and design of playground facilities as well as the manufacturing and fabrication of playground equipment and site furnishings. Dan has experience in facilitating the design and construction of playgrounds to meet the developmental needs of the children and users of the play spaces. His background in education and teaching has enabled him to develop programming to meet the goals of owners, designers, and builders of play facilities. Dan has facilitated many local landmark projects: Highfield Gardens, Evendale Recreation Center Playground, Julifs Park, Bicentennial Commons Playground Addition, Ziegler Park, Crescent Park Playground.

Dan has a Masters in Education, holds a US patent, is a Certified Playground Safety Inspector, and after 30 years in the playground industry, has joined Site Masters Inc. as a partner in the firm.

This Guide is a part of the Safety Resource Series and is provided as a public service by Play & Park Structures. The Safety Resource Series is made up of the Playground Maintenance Guide and the Playground Supervision Guide. For more information about the Series or to request digital copies of the Guides, visit www.playandpark.com or call (800) 727-1907.

Disclaimer
The purpose of this overview resource is to raise awareness about some considerations for a routine playground maintenance program; it is not to be considered as an all inclusive list. Do not rely upon this overview in lieu of the normal safety inspections that might otherwise be conducted. Please refer to the manufacturer specifications and warnings, which were supplied with the equipment, and continue with normal inspections. Please do not construe our failure to either itemize any particular maintenance activity or list any particular condition as a statement that these activities are unneeded or that these conditions do not require attention. PlayCore and its divisions volunteer these comments in the interest of safety while advising of the restricted context in which they are given.

Copyright © 2009 by Teresa Hendy and PlayCore, Inc.
All rights reserved. All materials contained in this guide are protected by copyright laws and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express written permission of PlayCore, Inc. Sample inspection forms may be reproduced in limited quantities, without permission, for the sole purpose of education or training within individual organizations.

• Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Playground Maintenance Guide

Table of Contents

Why is Maintenance Important? ... 4
Management and Staffing Priorities .. 5
Maintenance Inspection—Frequency and Process 6
Low Frequency Inspections
 Sample Inspection Form .. 7
 Inspection Guide .. 9
High Frequency Inspections
 Sample Inspection Form ... 25
 Inspection Guide ... 27
Resources .. 29
Replacement Parts .. 30

- Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Why is Maintenance Important?

Well-maintained playground equipment can help children to develop cognitively, physically, communicatively, socially, and emotionally in a safer environment. Along with helping to promote children’s development, a quality maintenance program has many positive outcomes.

- **Protect your investment:** Play equipment, protective surfacing, planning, and site development of a playground are significant investments. It simply makes good economic sense to maintain the equipment to extend its life and protect your school or agency’s investment.

- **Manage risk:** Proper, routine, and timely maintenance is a way of managing risks in the community’s play areas, helping to protect them from costly accidents, and demonstrating the community’s standard of care.

- **Improve children’s play experiences:** When playground equipment is broken or otherwise unusable, children miss opportunities for play. That moment of connection with others and fun-filled learning might be lost. The better maintained the equipment, the better the chance that a child’s life is improved. Your work could make the difference!

- **Promote community values:** Maintained and groomed play environments are a source of pride for the community. Taking good care of the playground equipment and maintaining a beautiful environment is an expression of your community’s values.

- **Control expenses:** Timely, preventive routine maintenance procedures help control expenses by reducing upkeep and replacement costs, enabling more accurate budgeting.

Learning Outcomes:
- Define the importance of maintenance as a key to maximizing playground value and managing risk
- Generate high and low frequency inspection protocols and procedures for a sustainable maintenance program
- Identify potentially hazardous conditions in the play environment and define proper maintenance practices for playground equipment and surfacing
- Summarize a variety of tools and generate a maintenance program unique to your school or agency

By identifying and eliminating these hazardous conditions, you can play an important role in...

Preserving the Play Environment, Promoting the Value of Play, and Protecting Children.

Did You Know?

It has been estimated that at least 33% of playground accidents could be avoided with a planned maintenance program (National Playground Safety Institute).
When designing a playground maintenance program, managers should consider, among other factors, these concepts:

- **Inspections should be routine, timely, and followed up with action.**
 - Tip: Design the program to be consistent with manufacturer’s instructions when available and take into account environmental conditions.

- **Have a system in place that ensures an appropriate response to hazards.**
 - A hazard is anything that could hurt someone. Serious hazards should be immediately repaired, removed, or taken out of service.
 - The play environment is constantly changing; your system should be capable of responding in an ongoing manner. **Tip:** Daily or high frequency inspections may help with responding to the dynamic play environment.

- **A successful program requires comprehensive commitment.**
 - Your program requires commitment that begins at the top because funds must be allocated to support it.
 - Everyone associated with the playground, from the manufacturer to the citizen, has a role to play in providing access to safer and age appropriate play.

- **Continually educate staff in these and other areas.**
 - How to effectively identify problems and repair play equipment
 - How to provide ongoing maintenance
 - How to keep records and documentation of work

- **When necessary, bring in outside vendors to perform inspections and/or do technical repairs.**

- **Practice complete documentation.**
 - Complete records of maintenance and repairs are essential for a sound maintenance program and risk control. Providing documented evidence that maintenance is being performed verifies a standard of care as set forth by the operator and creates a historical record that could be useful.
 - Often, warranties are not honored if there is no proof of maintenance.
Maintenance Inspection

Maintenance Inspection—Frequency and Process

Because play equipment and surfacing are subject to changes from use, abuse, and climate, they must be inspected on a regular basis. The frequency of inspection will be determined by many factors including equipment age, usage, and materials and external factors like the age of the users, climate, and vandalism. Regardless of site-specific attributes of the playground, two types of inspections should be performed on all playgrounds: low frequency and high frequency.

Low Frequency Inspections

Often performed quarterly or semi-annually, low frequency inspections are in-depth investigations of the equipment and surfacing looking for wear and tear. This inspection requires a staff member with mechanical knowledge and extensive knowledge about play equipment and surfacing standards. During or immediately after the inspection, staff should do preventive maintenance and repairs and/or remove damaged equipment to remedy problems discovered in the inspection. An example of this type of maintenance would be replacing heavily worn “S” hooks that were noted during the inspection. See pages 7-24 for a sample inspection form and corresponding guide.

High Frequency Inspections

Often performed daily or weekly, high frequency inspections look at frequently changing conditions caused by use, weather, and/or vandalism. During a high frequency inspection, staff checks and corrects playground conditions such as loose-fill surfacing depths, sanitation issues, and the presence of trash and debris. If any hazards are discovered, staff should follow school or agency procedures such as completing documentation, taking the area out of use, and/or correcting the problem. See page 25-28 for a sample inspection form and corresponding guide.

Playground Inspection Process

When new play equipment is installed and at the introduction of a new playground safety and maintenance program, it is good practice to have an audit of the equipment performed by a Certified Playground Safety Inspector (CPSI). The audit will note conditions that are not compliant with current industry standards and will form the basis for a systematic program of removal, repair, and/or retrofit.

For a list of Certified Playground Safety Inspectors in your area or for information about becoming a CPSI, contact the National Playground Safety Institute at (800) 626-6772 or online at www.nrpa.org/npsi.

Inspections Forms: Reports detailing inspections, maintenance, and repairs need to be completed for all types of inspections and maintenance. File these reports in an accessible location because they may be invaluable for ongoing maintenance, budgeting, staffing, designing new play areas, future play equipment selection, and other purposes.

Sample low and high frequency forms are included as part of this program guide. They can be reproduced and tailored to meet the site and policy specific needs of your school or agency. Because of the variance of each play area, these forms should not be considered as comprehensive lists of playground hazards or maintenance requirements.

• Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Low Frequency Playground Inspection (Quarterly/Semiannually)

<table>
<thead>
<tr>
<th>Playground</th>
<th>Inspector</th>
<th>Date</th>
<th>Equipment List</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

General Safety
1. Warning labels and age signage present and legible
2. Equipment free of crush and shear hazards
3. Equipment free of entanglement hazards, protrusions
4. Equipment free of sharp points, edges
5. Bolts ends less than two threads, rounded, smooth
6. No change in openings causing head entrapment
7. No insect, bird or animal infestation

Finishes & Material Conditions
1. Metal surfaces are free of rust and loose paint chips
2. Surfaces are clean, free of graffiti and vandalism
3. Wood is free of rot, splinters, warping, checking
4. Free of bent, broken, missing parts, excessive wear
5. Plastics components are free of cracks
6. Welds are intact and crack free
7. PVC coatings are not peeling and in good condition

Fasteners
1. Hardware is present, tight and fully engaged
2. Pipe caps are present on ends of tubing
3. Fittings/bearings are functional, greased, squeak free
4. Turnbuckles are engaged and properly adjusted
5. Cables/ropes are anchored and not unraveled

Structural Members
1. Footings/anchoring devices are secure and stable
2. Structural members are sound and securely fastened
3. Springs/rocking components in good repair

Gripping & Stepping Components
1. Hand gripping components secure and do not rotate
2. Stepping surfaces are level, stable and clean
3. Foot holds/rungs are tight and free of excessive wear

Slides
1. Slide bedway and rails are smooth and clear of debris
2. Bedway at platform is free of entanglement hazard

Swings & Moving Components
1. Chains are not twisted and are free of excessive wear
2. S-hooks are not worn and closed to within 0.04 inch
3. Swing hangers & bushings are free of excessive wear
4. Swing seats are smooth & in good condition
5. Tire seats are lightweight, smooth & in good condition
6. Tire swing assemblies greased and in good condition
7. All moving components are in good condition, secure, & lubricated

Protective Surfacing
1. Loose-fill surfacing is level and at proper depth
2. Use zones are clear of obstacles and debris
3. Surface drainage is functional with no standing water
4. Wear mats are properly secured in place, level
5. Unitary surfaces are intact, free of depressions & ruts

Codes
- V = Okay
- M = Maintenance
- R = Repair Required
- O = Outstanding Issue
- P = Parts Needed
- X = Corrected

Notes:
- This is a quarterly/semi-annual report and designed as a sample inspection report. Manufacturer’s maintenance instructions for inspection schedules and replacement parts are to be referred to prior to any repairs. “Maintenance schedules should be developed based upon actual or anticipated playground use” (CPSC). Retain all inspection reports to assist in developing comprehensive maintenance programs, inspection schedules, and for future budgeting and planning.

Reviewed By: __________________________ Date: __________________________

Comments: Use reverse as needed.
Codes
The following codes are used to indicate the present condition of the equipment.

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>√ (Okay)</td>
<td>A check mark indicates that the component has been checked and that the conditions are satisfactory.</td>
</tr>
<tr>
<td>M (Maintenance)</td>
<td>An “M” indicates that the condition was corrected during the inspection. Examples would be tightening hardware or removing debris.</td>
</tr>
<tr>
<td>R (Repair)</td>
<td>An “R” indicates that repairs cannot be readily completed while the inspector is on site and follow up repairs will be necessary by a skilled staff member or outside vendor. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance.</td>
</tr>
<tr>
<td>O (Outstanding)</td>
<td>An “O” indicates that a serious hazard may be present requiring additional action or that the inspector wants or needs a second opinion. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance. Examples:</td>
</tr>
<tr>
<td></td>
<td>o The inspector may not have the authority to order the removal of a piece of equipment.</td>
</tr>
<tr>
<td></td>
<td>o The inspector may be unsure of the existence of a protrusion or entanglement hazard and needs to consult with a CPSI.</td>
</tr>
<tr>
<td></td>
<td>o The structural integrity of a piece of playground equipment is in question and a structural engineer must be consulted.</td>
</tr>
<tr>
<td>P (Parts)</td>
<td>A “P” indicates that replacement parts are required and need to be ordered and installed. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance.</td>
</tr>
<tr>
<td>X (Completed)</td>
<td>An "X" indicates that all necessary work and actions have been taken to repair, replace or remove an unacceptable condition. Make certain that the date of correction is written beside the “X.”</td>
</tr>
</tbody>
</table>

Comments:
Guide for Low Frequency Inspections

The sample inspection form provided on page 7 is designed as a low frequency report for an existing playground. It is not intended as an instrument for a playground audit. It is understood when using this inspection report that the play equipment, play surfaces, use zones, and accessibility were compliant at the time this play area was designed and installed. Should there be any questions regarding the above compliance matters, a full scale audit needs to be conducted by a Certified Playground Safety Inspector (CPSI), prior to using this form.

Important Headings

- The name, location, or proper means of identifying the playground should be typed or printed.
- The name of the person conducting the inspection should be typed or printed.
- The date of the inspection should be typed or printed.
- Should multiple pages be necessary, number the additional pages and indicate the total number of pages.
- Print the equipment names in the “Equipment List” columns (one piece of equipment per column). Should more columns be necessary, add additional pages. Be as descriptive as possible for each piece of equipment, using characteristics such as height, color, location, number of swing seats, etc.

General Safety

This section addresses conditions that apply to every piece and type of playground equipment. Should you have any concerns regarding whether or not a hazard exists, mark the box with an “O” for outstanding issue and consult with a CPSI and/or the manufacturer of the equipment.

1. Check for required signs and labels.
 - The ASTM standard calls for a clearly visible label affixed to play equipment identifying the manufacturer and warning that protective surfacing material is necessary under and around the equipment. This label must be visible on each separate piece of equipment, and a composite play structure requires only one label. The manufacturer of the equipment should be identifiable. **Tip: Typically, the manufacturer’s name is also molded into plastic components or cast into steel pipe caps or collars.**
 - An age recommendation sign or label must be present on or near the equipment.
 - Check for other signs and labels that may be required and/or recommended including hot surface warnings and warnings about sports helmets and clothing with drawstrings, which can become strangulation hazards when worn on the equipment.
2. Check for crush and shear hazards.
Such hazards may crush a child’s finger or cause amputation. Crush and shear points can occur on components that are in motion like see-saws and moving bridge planks. To check for a crush or shear hazard, place a 5/8 inch diameter dowel in the opening. If the component could close down on the dowel, then a crush or shear hazard is present. Lightweight objects such as tic-tac-toe game pieces are not considered for crush and shear. *Tip: Should you have any concerns regarding crush and shear hazards, mark the box with an “O” for outstanding issue, and consult with a CPSI and/or the manufacturer of the equipment.*

3. Check for entanglement and protrusion hazards.
Typically caused by hardware or small diameter components that project out from a surface, entanglement and protrusion hazards may entangle clothing resulting in strangulation and/or impale skin causing a laceration, contusion, or other soft tissue damage. Projection gauges should be used to check for entanglement and protrusion hazards. Projection gauges are part of an inspection tool kit that is available for purchase from Play & Park Structures and the National Recreation and Park Association (NRPA). It is possible to fabricate your own gauges using the dimensions outlined in the Consumer Product Safety Commission’s Handbook for Public Playground Safety, publication #325, available for free at www.cpsc.gov. *Tip: Should you have any concerns regarding entanglements and protrusions, mark the box with an “O” for outstanding issue and consult with a CPSI and the manufacturer of the equipment.*

A. Check for entanglement hazards.
1. Check that there are no more than two threads exposed on a bolt end. In this photo, more than two threads are exposed, so this bolt would be considered an entanglement hazard.

2. Check that hardware does not increase in diameter from the initial surface out of which it projects, creating a hook, as seen in this photo.

3. Check that the gaps in an “S” hook are not greater than .04 inches (approximate thickness of a dime).

Projection gauges are part of an inspection tool kit that is available for purchase from Play & Park Structures. To order, contact your local representative at (800)727-1907 or www.playandpark.com and ask for Part #6101.

Preserving the Play Environment • Promoting the Value of Play • Protecting Children
4. Check that there are no gaps at the entrance to a slide at the point of attachment of the slide to the platform, as seen in this photo. If a gap is present, it must be considered for entanglement. Since there is no standard test method, use your best judgment to determine if a draw string on a child’s coat or outerwear could become entangled in the gap. If in doubt, photograph the gap and contact the manufacturer.

5. Check that hardware and small components do not project vertically above a horizontal unless the projection is less than 1/8 of an inch or it is rounded. In order for a piece of hardware or small component to be considered a vertical entanglement hazard, all of the following conditions must exist:

a. The projection would fit inside a three inch diameter ring, as seen in this photo.

b. The projection projects vertically above a horizontal and is perpendicular to the surface it comes out of (90 degrees), as seen in this photo. If the component projects out horizontally or below horizontal it is not considered for entanglement unless the projection is on the sidewall of a slide.

c. The projection is not rounded. In this photo, the projection on the left has perpendicular sides and must be considered for entanglement. The projection on the right, however, is rounded and, therefore, is not considered a vertical entanglement hazard.

d. The perpendicular portion of the projection is taller than 1/8 of an inch, as seen in this photo.

B. Check for protrusion hazards.

1. Place each of the three gauges over all projections, regardless of shape and orientation, as seen in this photo.
2. If the projection extends through the gauge and projects beyond the face of the gauge, then the projection is considered a protrusion hazard and has the potential to impale a child. In this photo the projection is a protrusion hazard.

3. Suspended components, such as swings, have stricter protrusion requirements because they move and may hold the added weight of a child, changing the dynamics of the hazard. On a suspended component, any projections that would fit inside a 1 ¼ inch diameter gauge may not project out more than 1/8 of an inch. (A suspended projection hazard gauge, resembling a large flat washer, is part of the protrusion gauge kit.)

When projection gauges are not available, use the following procedure to determine the presence of a protrusion hazard.

- If the diameter or maximum cross section of a projection is less than or equal to ½ inch, the projection should not extend more than ¼ of an inch above the surface to which it is attached.
- If the diameter or maximum cross section of a projection is less than or equal to 1 ½ inches, the projection should not extend more than 3/4 of an inch above the surface to which it is attached.
- If the diameter or maximum cross section of a projection is less than or equal to 3 inches, the projection should not extend more than 1 ½ inches above the surface to which it is attached.

<table>
<thead>
<tr>
<th>Quick Reference Protrusion Hazard Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the diameter or maximum cross section of a projection is less than or equal to this Diameter,</td>
</tr>
<tr>
<td>Diameter</td>
</tr>
<tr>
<td>½ inch</td>
</tr>
<tr>
<td>1 ½ inches</td>
</tr>
<tr>
<td>3 inches</td>
</tr>
</tbody>
</table>
4. Check for sharp points and edges.
Use your judgment to determine whether or not a point or edge could harm a child; generally, all edges should be smooth and rounded. Pay particular attention to rough edges on hardware, worn or cracked materials, splintered wood, rusted or cracked metal, and weld spatters on metal surfaces.

5. Check that bolt ends show less than two threads and are rounded and smooth.
Pay close attention to bolt ends because rough or projecting bolt ends could be entanglement and protrusion hazards.

6. Check for head entrapment hazards.
Head entrapment and a resulting strangulation hazard can occur when children enter an opening feet first with only their legs and torso passing through the opening. Completely bound openings that measure between 3.5 inches and 9 inches must be considered for head entrapment. If the equipment was installed correctly and audited after installation, there should not be entrapment hazards unless the equipment shifts or receives improper repairs.

Head entrapment probes and templates are available for purchase from Play & Park and the NRPA as part of the inspection tool kit mentioned in a previous section. There are two probes/templates: a torso probe/template and a head probe/template. The probe is three dimensional and should be purchased in order to guarantee accuracy. Templates are two dimensional and may be used in place of probes. It is possible to make your own templates using the dimensions outlined in the CPSC Handbook for Public Playground Safety, but when making your own templates, make certain that the final product is accurate.

A. Test all completely bound openings that measure between 3.5 and 9 inches. An opening where safety surfacing is the lowest boundary is not considered a hazard and is not tested.
B. Insert the torso probe/template into the opening as shown in the photograph. If the torso probe/template does not enter the opening, then the opening is compliant and it does not need to be checked further. If the torso probe/template goes into the opening to a depth of four inches, then the opening is considered accessible to a child and the opening must be checked using the head probe/template to determine if an entrapment hazard is present.

C. Insert the head probe/template into any opening that allowed the torso probe/template to enter. If the head probe/template will freely pass through the opening, no head entrapment hazard is present. If the head probe will not enter and exit the opening freely, the opening is considered a head entrapment hazard.

If a head entrapment hazard exists, it should be corrected immediately. The degree of severity of the hazard will be determined by the likelihood that a child can get into the opening and the height of the opening above the ground. Higher openings where it is unlikely the entrapped child's feet will contact the ground pose a greater risk. Tip: If you are uncertain whether or not a head entrapment hazard exists, close off the opening and take the equipment out of service until a CPSI and/or the manufacturer can be contacted to look at the issue.

7. Check the cleanliness and sanitation of the play environment. Serious health hazards can be created by animal feces, bodily fluids, and bird droppings. Also, check regularly for the presence of pests, like insects and vermin, and remove them and their nests from play areas.
Finishes & Materials Conditions

This section applies to specific types of surfaces, finishes, and materials and may not apply to all components of the play equipment.

1. Check that metal surfaces are free from rust and chipping paint.
 Clean and paint all metal surfaces if rust appears. Prepare the surfaces properly before painting. Touch up paint is available for purchase from Play & Park (Part #139361).

2. Check the conditions of all surfaces.
 - Surfaces should be free from mold and mildew as they can be health and slip hazards.
 - Equipment and surfacing should be carefully checked to verify that any graffiti or vandalism did not create a hazard. Graffiti breeds more graffiti and should be removed immediately.

3. Check that wood surfaces are free from rot, splinters, warping, and severe checking.
 Remove any splinters, smooth the area, and fill with caulk if necessary. If warping or rot exists, check the integrity of the wood and its anchoring point. (Hidden rot can occur where the wood member intersects the protective surface and concrete footers.) Tip: When possible, obtain replacement wood from the manufacturer of the wooden play equipment.

4. Check that there are no damaged, bent, broken, or missing parts.
 Damaged, bent, broken, or missing components could compromise the integrity of the structure.

5. Check that plastic components are free from cracks, holes, and burns. Damaged plastic components should be repaired, removed, or isolated. Before altering a damaged component, consult with the manufacturer of the equipment to determine if repair is possible.
6. Check that no weld joints are broken, rusting, or rough.
A skilled welder should make repairs within the parameters of manufacturer and playground industry standards. Be sure to repaint the weld afterward. Touch up paint can be purchased from Play & Park (#139361). Do not weld swing “S” hooks closed.

7. Check PVC coated components for signs of wear and peeling.
Frequently used to coat swing chain, platforms, and other components, PVC coatings are subject to degradation and UV breakdown and need to be checked for signs of wear and peeling. When possible, correct peeling by re-coating the component immediately because, in some cases, exposed metal may deteriorate more quickly. Plastisol, which can be used to touch up PVC coated decks and other components, can be purchased from Play & Park (#140212).

Fasteners

This section applies to specific types of hardware and other fasteners and may not apply to all play components on the playground.

1. Check that all hardware is present, tight, and fully engaged.
Physically check hardware to confirm that it is tight. Most manufacturers utilize self locking bolts or lock-tite, but intensive use of the equipment can cause bolts to loosen. If non-moving equipment moves, the hardware may be missing or not fully engaged.

2. Check that caps and plugs are present on the ends of all pipes and tubes.
Exposed tubing and pipe must have capped ends. Caps cover sharp edges, prevent insect infestation, and protect the metal from freeze cycles. The caps should be rounded, securely fastened, and should not create an entanglement or protrusion hazard.

3. Check that all fittings and bearings are functional, lubricated, and squeak free.
Fittings and bearings should be in good condition, not showing excessive signs of wear. Lubricate during inspection to prolong the life of the component. Replace fittings and bearings that are in poor condition, showing excessive signs of wear.
4. Check that turnbuckles are fully engaged and properly adjusted. Used to keep components such as climbing nets taut, turnbuckles may loosen over time. Adjust turnbuckle tension as required.

![Worn ropes and an exposed anchoring device make this component unsafe.]

5. Check that all cables and ropes are securely fastened. Cables and ropes must be securely anchored and not capable of looping back on themselves. The anchoring device must be located below the minimum required depth of protective surfacing. Check to make certain that cables and ropes are in good condition and not unraveling or coming apart.

Structural Members

This section applies to the structural integrity of the playground and applies to all types of components.

1. Check to make certain that all footings and other forms of anchoring devices are stable and are not exposed.
 - Footings and anchoring devices should be stable and in good repair. Standing water and seasonal freeze cycles can soften the ground around the footings, compromising their integrity.
 - Concrete footings and other anchoring devices should be installed below the level of the protective surfacing material. If there are exposed footings, the play area should be taken out of service, and they should be corrected as soon as possible.

![The concrete footing is exposed.]

2. Check to make certain that structural members are sound and securely fastened. Structural members, such as upright support posts, horizontal beams, and platforms, must be sound and securely fastened, fasteners being tight and secure, with no unintended movement. When a component shifts, head entrapment hazards may be created.

![Standing water could cause instability.]

3. Check that springs and rocking components are in good repair. Coil springs and other types of rocking components are subject to heavy use. For this reason, they may crack or wear out and become loose from their anchoring devices. It is important to check the points of attachment to the footing and to the body of the spring bouncer. Check the springs and rocking components for loose or missing hardware and for signs of cracking or degradation.

![This collar is slipping.]

Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Gripping and Stepping Components

1. Check that all handholds/grips are tight, in good condition, and do not rotate. Unexpected movement of a handhold could cause a child to fall.

2. Check that all stepping surfaces are level, stable, and clean.
 - Stepping surfaces that are not level and stable may create a trip hazard. Stairs, platforms, and other types of access devices should not have abrupt changes of level.
 - All surfaces should be kept clean and free of debris. Platforms should drain well.

3. Check that all foot rungs/holds are tight, secure, and in good condition.
 - If a foot hold is not intended to move, it should not move. Make certain that components such as button steps and balance beams are level and secure.
 - Excessive wear on a stepping component may impact the integrity of the component and also create a tripping hazard, especially if the surface is separating, such as when a pipe splits.

Slides

1. Check all slides to make certain that the bedways and side walls are smooth and free from debris.
 - Look for smoothness, and note excessively worn slide parts.
 - Look for foreign objects caught in the spaces between sections of the slide, as seen in this photo.

2. Check the slide bedway and the attachment point of the slide to the platform for conditions that might entangle clothing or body parts.
 The slide bedway must be free from entanglement hazards, as noted in the entanglement section. Clothing entanglement can occur when the bedway separates from the platform creating a gap large enough to allow draw strings or clothing to enter the gap. Entanglement may also occur when sections of the bedway separate or when the component is cracked or damaged. Tip: If you are unsure of the entanglement potential, mark an “O” for outstanding issue on the inspection form and take the equipment out of service until the issue is resolved.
Swings & Moving Components

1. Check that swing chains or cables are not twisted and are free from excessive wear.
 - Check the links of the chain from top to bottom for kinks, paying special attention to the links at the top of the chain and at the swing seat connection.
 - Unwrap swing chains if they are wrapped around the top rail of the swing structure, checking for deep wear.
 - Tip: Purchase swing chain from a playground equipment manufacturer. Chain purchased from a hardware store can have a different hardness that is not suitable for playground use.

2. Check “S” Hooks and other types of fasteners for excessive wear and to make certain that they are closed.
 - Check frequently that “S” hooks are not worn more than ⅛ of their thickness, as seen in this photo. Always replace them with “S” hooks from a playground equipment vendor. Never reuse an “S” hook. Once it is closed and re-opened, its strength has been compromised.
 - All fasteners should be closed so that the opening is less than .04 inches as measured with an automotive feeler gauge. For perspective, a U.S. dime is approximately .04” thick. Never weld an “S” hook closed.

3. Check that all swing hangers are free from excessive wear and that the bushings are lubricated and in good condition. Swing hangers and bushings should be checked frequently for signs of excessive wear. Because bushings are designed to wear out so that the cast swing hanger does not, make certain that the component that supports the swing chain has a bushing, bearings, or some other means of reducing the friction yet moves freely within the swing hanger. Swing hangers should be securely fastened to the top rail so that they do not spin or rotate around the top rail unless designed to do so.

4. Check that swing seats are smooth, in good condition, and free from cuts or tears. Injuries can occur if swing seats break while in use. Make certain that fasteners are not pulling through the swing seat material, the material is not cracked or torn impacting the integrity of the seat, and the edges and surfaces are rounded and smooth. When a child jumps out of a swing seat while swinging, the seat may fly back into the path of a child on an adjacent swing and an exposed metal edge or rough jagged vinyl may cut a child.

5. Check that tire swing seats are light weight, smooth and rounded, and in good condition.
 - Tire swing seats must be lightweight (less than 35 pounds).
 - The tire must be smooth, rounded, and in good condition. Check to make certain that there are no exposed steel belts or sharp or rough edges. Look at the condition of the seat where the hardware comes through the tire to make certain that the rubber or plastic is not cracking.

- Preserving the Play Environment - Promoting the Value of Play - Protecting Children
6. Check that tire swings assemblies, including swivels and/or bearings, remain properly greased and are in good condition.

7. Check that all other moving components are in good condition, secure, and lubricated.
 - Moving components may include but are not limited to swing structures, track rides, trapeze ladders, trapeze rings, tire swings, Tilt-N-Twirl/upright twirling components, scoop diggers, steering wheels, Speedy Spinners/spinning rides, chain net climbers, panels with moving assemblies, spring bouncers, suspension bridges, and FunTrainer/pogo type bouncers.
 - The integrity of the component and all its parts should be checked frequently and should be in good condition.
 - Moving components may come loose and should be checked frequently at the concrete footing or other anchor/attachment point.
 - Moving components should be greased or lubricated during inspection.

Other
In this section of the inspection form, add any other condition not listed above that should be noted.
Protective Surfacing – Loose-fill and Unitary

(Note: Because of the importance of understanding the characteristics of protective surfacing, descriptions are provided and followed with the explanation of the use of this section of the inspection form.)

All playground equipment must have impact attenuating (protective) surfacing under and around it. Unacceptable playground surfaces include grass, packed earth, asphalt or concrete, and other hard surfaces. Acceptable surfacing materials fall into two categories: loose-fill and unitary surfacing. Your budget, the amount of use the playground gets, your ability to maintain the surface, and other factors will help facilitate playground surfacing selections.

Unacceptable Playground Surfacing
- Grass
- Packed earth
- Concrete, asphalt
- Other hard surfaces

Acceptable Playground Surfacing Examples
- Sand, gravel
- Wood chips, shredded bark mulch, engineered wood fiber
- Unitary materials certified for playground use
- Poured-in-place rubber, rubber tiles, bonded rubber

Grass and packed earth are unacceptable playground surfaces.

Play & Park Structures SurfaceMax
Engineered Wood Fiber is a good choice for loose-fill playground surfacing.

Although it cannot eliminate all injuries, well-maintained protective surfacing should be capable of absorbing some of the impact from a falling body. For this reason, your role in maintaining the surfacing is essential.

Consumer Product Safety Commission Documentation of Surfacing: Materials used as protective surfacing under playground equipment must meet impact attenuation criteria. The CPSC has outlined the performance criteria that various types of surfaces must meet. Manufacturers of unitary materials, shredded rubber, recycled tires, and engineered wood fiber are expected to supply all compliance and test reports for their surfaces. In the event that local landscape materials are used you may consult with the Consumer Product Safety Commission’s Handbook for Public Playground Safety for information regarding the type and depth of common surfaces. For more information, visit www.cpsc.gov, publication #325.

- Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Loose-fill Surfacing Materials

When impacted, loose-fill materials move downward and/or outward, providing some fall cushioning but also requiring ongoing raking and replenishment to keep the materials in place at an appropriate depth. Loose-fill materials must be contained in some manner either by using earth berms, timber, or plastic borders called park timbers. Rubber wear mats can be placed in high impact areas, such as under swings and the base of slides, to reduce the frequency of raking. The CPSC classifies loose-fill materials as organic or inorganic.

Examples of organic loose-fill materials are engineered wood fiber, recycled wood pallets, and shredded bark mulch. Engineered wood fiber is a wood product that is made exclusively for use under playground equipment. Organic materials require more frequent replenishing than inorganic materials because they naturally decompose over time. Wood fibers must be drained well and topped off regularly to maintain the desired depth and to prevent the growth of mold and bacteria.

Inorganic loose-fill materials include shredded rubber, sand, pea stone, and gravel. Inorganic materials do not decompose and require less frequent replacement. Frequently found on older playgrounds, sand and gravel require frequent raking and turning due to their tendency for compaction. Raking and turning can help prevent gravel from developing a hard layer known as hardpan that resembles concrete. Shredded rubber is attractive and durable, does not form hardpan, but must be maintained at the desired depth.

Table 2. Minimum compressed loose-fill surfacing depths

<table>
<thead>
<tr>
<th>Inches</th>
<th>Of</th>
<th>(Loose-Fill Material)</th>
<th>Protects to Fall Height (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Shredded/recycled rubber</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Sand</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Pea Gravel</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Wood mulch (non-CCA)</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Wood chips</td>
<td>10</td>
</tr>
</tbody>
</table>

Source: CPSC

Loose-fill materials should be maintained at a depth that will absorb some impact from a fall.

All types of loose-fill materials need to be maintained at an acceptable depth in order to retain their fall attenuation properties. The Consumer Product Safety Commission’s Handbook for Public Playground Safety recommends that there be 12 inches of loose-fill materials under playground equipment. Under no circumstances should loose-fill materials be less than nine inches. Refer to Table 2 entitled “Minimum compressed loose-fill surfacing depths” for information about the fall attenuation properties of various types of surfacing. Your role of raking and leveling the loose-fill surfacing materials will be essential in helping to protect children on the playground.

• Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Unitary Surfacing Materials

Unitary products include poured-in-place rubber (rubber particles bound with a liquid urethane), rubber tiles, bonded rubber, and synthetic turf. Unitary surfacing does not require raking, decompressing, or replenishment; however, it may require sanitization or maintenance due to surface debris, vandalism, movement in the tiles, erosion, poor drainage, or worn areas that result from repeated impacts. When unitary surfacing is in need of repair, it should be done immediately as per supplier’s instructions. Always consult the manufacturer before applying any chemicals or before pressure washing.

<table>
<thead>
<tr>
<th>Types of Unitary Surfacing Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poured-in-place Rubber</td>
</tr>
<tr>
<td>SurfaceMax Poured Rubber</td>
</tr>
<tr>
<td>Recycled Poured-in-place Rubber Surfacing</td>
</tr>
</tbody>
</table>

Making a Purchasing Decision

The generally lower initial cost of purchasing loose-fill surfacing materials should be weighed against the predictable cost of maintaining it and topping it off regularly. Taking the maintenance costs into account, in the long term purchasing unitary materials may be more economical for your school or agency.

Maintaining the protective nature and longevity of loose-fill surfacing includes the following tasks:

- Raking and leveling
- Removing debris
- Decompressing, raking, turning, and tilling
- Replenishing, topping off, and replacement of worn out materials
- Installation and maintenance of border material or park timbers
- Drainage, drainage, drainage!

The greatest benefits of unitary materials are the ease of maintenance, predictable cushioning properties, and that the material stays in place. The disadvantages are the generally higher initial cost and the eventual loss of cushioning properties over time. Most unitary materials require a base of compressed stone or concrete/asphalt. The cost of this base should be considered in the overall cost analysis of the surface system. (See your manufacturer’s warranty information for the predicted product life.)
This section of the sample Low Frequency Inspection form applies to specific types of surfacing. All categories may not apply depending upon the type of surfacing on your school or agency’s playground.

1. Check that loose-fill surfacing is level and the proper depth. Because loose-fill materials get kicked out and ruts develop in high impact areas, all loose-fill materials must be regularly raked level. Similarly, loose-fill materials must be replenished when the surface level drops below the minimum level required for the height of the equipment in the area. Sand and pea stone must be turned regularly to reduce compaction and the formation of hardpan.

2. Check that the use zones (areas with protective surfacing) are clear of obstacles and debris. Toys, site furnishings, and other objects should not be in the use zones. These items and other debris must be removed because they can block fall paths to the safety surfacing, endangering children. In this photo the bench has been pulled into the use zone.

3. Check that the surfacing material drains well and is not holding water. Standing water can cause moss or mold growth, possible slip hazards, and erosion of the subsurface of unitary materials creating depressions and possible trip hazards.

4. Check that wear mats are properly secured in place and level. There should not be any hardware or concrete footing visible on or around the wear mat.

5. Check that unitary surfaces are intact, free from depressions, ruts, and worn areas. Look for general wear-and-tear of the unitary materials, paying special attention to high impact areas like swings and slide exits.

- Preserving the Play Environment • Promoting the Value of Play • Protecting Children
High Frequency Playground Inspection (Daily/Weekly)

<table>
<thead>
<tr>
<th>Playground</th>
<th>Inspector</th>
<th>Week of</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Walk-through Visual Check & Routine and Cleaning Tasks

<table>
<thead>
<tr>
<th>General Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area is free from all trash, broken glass, weeds, and storm remnants.</td>
</tr>
<tr>
<td>All walkways are free from ice and trip hazards.</td>
</tr>
<tr>
<td>No hazards have been created by vandalism or user modification.</td>
</tr>
<tr>
<td>Drains are working properly.</td>
</tr>
<tr>
<td>There are no overhead hazards that could fall on users.</td>
</tr>
</tbody>
</table>

Protective Surfaces

| Surfaces are free from all debris and foreign material. |
| Loose-fill surfaces are level, particularly under swings & slide exits. |
| Loose-fill surfaces are raked to proper depths and not compacted. |
| All unitary surfaces are intact and free from trip hazards. |
| There are no exposed footings or loose borders/curbs. |
| Surface drainage is functional with no standing water. |
| Protective surfaces are not frozen. |

Playground Equipment

| There are no damaged, loose, vandalized, or missing parts. |
| Equipment is not bent and is stable. |
| There are no user modifications, like ropes tied to parts. |
| All moving parts, like swing seats and chains, are in good repair. |
| There are no hazards from glass or other litter on the equipment. |

Other

<table>
<thead>
<tr>
<th>Codes</th>
<th>V = Okay</th>
<th>M = Maintenance</th>
<th>R = Repair Required</th>
<th>O = Outstanding</th>
<th>P = Parts Needed</th>
<th>X = Corrected</th>
</tr>
</thead>
</table>

Inspection Comments

Details (use back of form for additional comments) □ See Attached Repair Date

- Mon
- Tues
- Wed
- Thurs
- Fri
- Sat
- Sun

Reviewed By: __________________________ Date: __________________________

Note: This is a high frequency report and designed as a visual assessment of the play area, play equipment, and play surfacing. Frequently used playgrounds may require a more detailed report by a staff member experienced in repair and playground inspection. Always consult manufacturer’s maintenance instructions for inspection schedules and replacement parts. “Maintenance schedules should be developed based upon actual or anticipated playground use” (CPSC). Retain all inspection reports to assist in developing comprehensive maintenance programs, inspection schedules, and for future budgeting and planning.
Codes
The following codes are used to indicate the present condition of the equipment.

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>√ (Okay)</td>
<td>A check mark indicates that the component has been checked and that the conditions are satisfactory.</td>
</tr>
<tr>
<td>M (Maintenance)</td>
<td>An “M” indicates that the condition was corrected during the inspection. Examples would be tightening hardware or removing debris.</td>
</tr>
<tr>
<td>R (Repair)</td>
<td>An “R” indicates that repairs cannot be readily completed while the inspector is on site and follow up repairs will be necessary by a skilled staff member or outside vendor. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance.</td>
</tr>
</tbody>
</table>
| O (Outstanding) | An “O” indicates that a serious hazard may be present requiring additional action or that the inspector wants or needs a second opinion. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance. Examples:
 o The inspector may not have the authority to order the removal of a piece of equipment.
 o The inspector may be unsure of the existence of a protrusion or entanglement hazard and needs to consult with a CPSI.
 o The structural integrity of a piece of playground equipment is in question and a structural engineer must be consulted. |
| P (Parts) | A “P” indicates that replacement parts are required and need to be ordered and installed. If the condition could present a hazard to users, the equipment should be taken out of service until the situation can be corrected. When the repairs have been made, indicate so by marking an “X” for completed maintenance. |
| X (Completed) | An “X” indicates that all necessary work and actions have been taken to repair, replace, or remove an unacceptable condition. Make certain that the date of correction is written beside the “X.” |

Comments:
Guide for High Frequency Inspections

Guide for High Frequency Inspections

This inspection form guide details daily/weekly maintenance tasks that should be done within the play environment. Each section of the form is described in detail below. Refer to the previous section for additional inspection task details and information about playground surfacing.

Important Headings

- The name, location, or proper means of identifying the playground should be typed or printed.
- The name of the person conducting the inspection should be typed or printed.
- The date and day of the week should be typed or printed.

General Areas

- The play area should be cleaned of trash, broken glass, storm remnants (like tree limbs), and other items that may be hazardous. Trash cans should be emptied when necessary.
- Entry and perimeter walkways should be free from ice and trip hazards such as scattered gravel or sand.
- The general area should be checked for vandalism and changes made to the environment by its users. Examples include objects like site furnishings moved into the use zones and ropes or other items tied to the equipment.
- Visually check to see if the area is free from standing water and that drains are clear and working.
- Visually inspect above the play area for dead trees and branches. After a storm, look for broken limbs and damaged trees and electrical wires that may fall into the play area.

Protective Surfaces

- Clean away foreign materials, like rocks, that could affect the impact attenuation (cushioning) ability of the surface or be a hazard.
- Loose-fill surfacing materials require regular/daily raking and leveling, particularly under and around swings and slide exits. The use of wear mats will minimize the need for raking under these components.
- Raking can keep loose-fill materials level and prevent compaction. Tip: Mark upright support posts and borders/curbs to indicate the proper surfacing depth.
- Unitary surfaces can deteriorate, crack, and separate. Check for any severe wearing and conditions that could create trip hazards.
- If there are exposed concrete footings, level and/or top off the surfacing or close the area for use. Loose borders/curbs can present a trip hazard and should be corrected.
• Standing water can breed mold, mildew, and bacteria; speed up the deterioration of organic loose-fill materials; affect the impact attenuation of loose-fill materials; and freeze, reducing the protective characteristics of the surfacing.

Playground Equipment
• Check on and around the equipment for damage resulting from vandalism or normal use. Damaged, missing, and loose parts require immediate repair or replacement.
• Stability may be compromised by loose concrete footings, which can develop under moving equipment (swings, bouncers, Speedy Spinners) or when the ground has become saturated. Bent or unstable equipment must be addressed immediately.
• Foreign objects such as toys, ropes, dog leashes, and sticks should be removed from the playground equipment. Ropes tied onto equipment need to be cut off immediately because they can become strangulation hazards.
• Because moving parts are subject to heavy use, the integrity of the component, all its parts, and the anchor or attachment point should be checked frequently and should be greased or lubricated during inspection.
• Glass, drug paraphernalia, and other dangerous materials should be removed. Tip: Check inside tunnels and tube slides as well as between the sections of slides to make certain there are no hidden dangerous materials.

Other
In this section of the inspection form, add any other condition not listed above that should be noted.

Codes
See the reverse of each inspection form for an explanation of the codes.

Inspection Comments
Specifically detail any items requiring action by personnel and note the date of repair. Utilize the back of the inspection report for further descriptions and/or drawings.

Reviewed By
This report is to be reviewed, approved, dated, and retained by the owner or their representative, demonstrating his or her awareness of the conditions noted in the report.
Glossary

CPSI- Certified Playground Safety Inspector is a person who is certified by the National Playground Safety Institute to perform playground safety inspections.

Crush and shear points- These junctures can cause laceration, abrasion, amputation or fracture during use. They are defined as any point that can entrap a 5/8 inch diameter rod when one portion of the moving component closes down upon another component.

Entanglement- This condition occurs when a person’s clothing or items worn around the person’s neck become caught or entwined on play equipment. Entanglement can result in strangulation, loss of a body part, or emotional injury.

Entrapment, head- Any condition which impedes withdrawal of the head when the body has penetrated an opening. Head entrapment can result in strangulation.

Guardrail- The device around a platform or elevated surface that helps protect a child from an inadvertent fall.

Impact attenuating surfacing- Material(s) to be used within the use zone of any playground equipment. Protective surfacing shall meet the minimum impact attenuation requirements of ASTM specification F1292.

Partially bounded opening- Any opening in a piece of play equipment that is not totally enclosed by boundaries on all sides so that the perimeter of the opening is discontinuous.

Projection- A component which, due to its physical nature, must be tested to determine whether or not the projection would be considered to be a protrusion or entanglement hazard. Such a component would fit inside one of the three projection gauges.

Protective barrier- An enclosing device around an elevated surface that prevents both inadvertent and deliberate attempts to pass through the device.

Protrusion- A projection which, when tested in accordance with the requirements herein would be found to be a hazard having the potential to cause bodily injury to a user who impacts it.

Sharp edge/point- An edge or point that could lacerate the skin.

Trip hazard- An abrupt change in elevation that is not clear and obvious to the user.

Use zone- The area beneath and around equipment where a child might be expected to land if they were to fall from the equipment. This area must be covered with an impact attenuating surfacing material.

Organizations

NPSI- National Playground Safety Institute (www.nrpa.org/npsi; 800-626-6772)
NPSI is a program of the National Recreation and Park Association.

IPEMA-International Play Equipment Manufacturers Association (www.ipema.com; 888-944-7362)
IPEMA is a non-profit, membership, trade association that represents and promotes an open market for manufacturers of playground equipment and surfacing.

NPPS- National Program for Playground Safety (www.uni.edu/playground; 800-554-7529)
NPPS is the premier non-profit organization in the United States delivering training and services about outdoor play and safety.

ASTM- ASTM International (www.astm.org; 610-832-9500)
ASTM, formerly the American Society for Testing and Materials, is an independent and renowned developer of technical standards utilized in testing a multitude of products, including playground equipment and related products.

The CPSC regulates many products, including playground equipment and related products, to help ensure consumers/users safety.

Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Replacement Parts

Play & Park Structures

www.playandpark.com
401 Chestnust Street, Suite 310
Chattanooga, TN 37402
(800) 727-1907

To make a warranty claim, send your written statement of claim, along with the original purchase invoice or invoice number to: Play & Park Structures, Customer Service, 401 Chestnut St., Ste. 310 Chattanooga, TN 37402. For more information about your warranty contact your local Play & Park representative at the phone number or website listed above.

To purchase additional surfacing materials or replacement Play & Park Structures parts or components that are not under warranty, please contact your Play & Park representative at (800) 727-1907 or www.playandpark.com and provide the part number as indicated below.

Maintenance Products

ASTM Inspection Kit
#6101

Plastisol
#140212

Graffiti Remover
#302139

Touch-up Paint
#139361
Indicate color

Labels and Signs

Replacement Labels
#305551 Age appropriate 5-12
#305561 Age 2-5; 5-12
#305550 Age 2-5
(shown)
#305552 Warning concerning hard surfaces (shown)

Age Appropriate Fiberglass Signs
#67866 Pre-school age graphics (shown)
#67867 School age graphics
#67868 Pre-school and school age graphics

• Preserving the Play Environment • Promoting the Value of Play • Protecting Children
Swing Accessories

S Hook
#1

S Hook Pliers
#4248

Swing Clevis
#166683

Swing Hangers
#1461 2-3/8” Toprail painted
#1462 3.5” Toprail painted
#1463 5” Toprail painted
#1485 2-3/8” Toprail galvanized (shown left)
#1486 3.5” Toprail galvanized
#1487 5” Toprail galvanized
Anti-wrap swing hanger (shown right)
8105 2-3/8” Toprail
#8106 3.5” Toprail

Swing Seats
#67548 Strap seat
#67549 Strap with clevis (shown left)
#67552 Enclosed tot seat
#67553 Enclosed tot seat with clevis (shown right)
Replacement Parts

Tire Swing Accessories

#159194 Tire swing bracket (shown right)
#300196 Tire seat
#304005 Tire seat support ring

Surfacing

Poured-in-place rubber
Bonded rubber
Rubber tiles
Shredded rubber
Engineered wood fiber
Synthetic turf

Wear Mats
#161292

Park Timbers, 4’ sections
#67757 Recycled black, 8” high
#67758 Color, 8” high
#67764 Recycled black, 12” high (shown)
#67765 Color, 12” high

• Preserving the Play Environment • Promoting the Value of Play • Protecting Children